Android消息机制源码分析

移动开发 来源:sun_____xin 232℃ 0评论

Android消息机制的概述

Handler 是Android消息机制的上层接口,通过它可以轻松的将一个任务切换到Handler所在的线程去执行。

Q&A

  • 为什么Android需要通过Handler去切换任务执行的线程呢?
    因为Android规定只能在主线程中更新UI。如果在子线程中访问就会抛出异常,看源码中的操作:
void checkThread() {
    if (mThread != Thread.currentThread()) {
        throw new CalledFromWrongThreadException(
                "Only the original thread that created a view hierarchy can touch its views.");
    }
}

但是Android系统建议不能在主线程中进行耗时操作,所以产生Handler的原因就是为了解决在子线程中无法访问UI的矛盾。

  • 系统为什么不允许在子线程中访问UI呢?
    因为Android的UI是线程不安全的,多线程并发访问会导致UI控件处于不可预期的状态。
  • 为什么不加锁同步访问呢?
    影响效率。

Handle的工作原理

在创建的时候会采用当前线程的Looper来构建内部的消息循环系统,如果当前线程没有Looper就会报错。Handler创建完毕之后
其内部的Looper和MessageQueue就可以和Handler一起工作了。

主要的类

  • Handler(主要负责消息的发送与接收)
  • MessageQueue (单链表结构,负责消息的插入与读取)
  • Looper(轮询消息队列)
    • ThreadLocal (线程内部的数据存储类)

Android消息机制的分析

ThreadLocal的工作原理

是一个线程内部的数据存储类,通过它可以在指定的线程存储数据,存储之后,也只能在指定线程中获取到存储的数据,其他线程是无法获取到的。

//ThreadLocal.java
public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

public T get() {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null)
            return (T)e.value;
    }
    return setInitialValue();
}

MessageQueue的工作原理

主要包含两个操作插入enqueueMessage读取next。读取本身会伴随着删除操作。消息队列内部维护的是一个单链表结构,因为单链表进行插入与删除的操作效率较高。下面是两个方法的实现。

// 其实就是单链表的插入操作
boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}

//是一个无限循环的方法,如果消息队列中没有消息,next方法就会阻塞在这里,有新消息到来,会返回这条消息并将其从单链表中移除
Message next() {

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }

            // If first time idle, then get the number of idlers to run.
            // Idle handles only run if the queue is empty or if the first message
            // in the queue (possibly a barrier) is due to be handled in the future.
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }

            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }

        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler

            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf(TAG, "IdleHandler threw exception", t);
            }

            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }

        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}

Looper的工作原理

Looper会不停的从MessageQueue中查看是否有新消息,如果有新消息会立刻处理,否则就一直阻塞在哪里。Handler的工作需要Looper,如果没有Looper的线程就会报错。

//在构造方法中创建一个消息队列,将当前线程保存起来
private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

//通过Looper.prepare()为当前线程创建一个Looper,然后调用Looper.loop()开启消息循环
private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

/**
 * Run the message queue in this thread. Be sure to call
 * {@link #quit()} to end the loop.
 */
public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        final Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        final long traceTag = me.mTraceTag;
        if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
        }
        try {
            msg.target.dispatchMessage(msg);
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

loop方法是一个死循环,唯一跳出循环的方法就是 MessageQueue.next() 返回null

 Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

Looper处理消息

msg.target.dispatchMessage(msg);

msg.target值得就是发送这条消息的Handler对象,最终又交给自己的dispatchMessage方法处理。注意这里。该方法是在创建Handler时所使用的Looper中执行的,这样就成功的将代码逻辑切换到了指定的线程中去执行了。

Handler的工作原理

Handler 的主要工作包括消息的发送和接收过程。

发送消息 post 与 send 的一系列方法,发送消息的过程就是向消息队列中插入一条数据。最终都会调用这个方法

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

插入数据之后MessageQueuenext方法就会将这条数据返回给Looper开始处理,最终Looperloop方法中交给Handler来分发与处理,即调用Handler的dispatchMessage方法。

/**
 * Handle system messages here.
 */
public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

主线程的消息循环

Android的主线程就是ActivityThread,入口方法是main。通过Looper.prepareMainLooper()来创建主线程的LooperMessageQueue,然后调用Looper.loop()开启主线程的消息循环。

public static void main(String[] args) {
    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
    SamplingProfilerIntegration.start();

    // CloseGuard defaults to true and can be quite spammy.  We
    // disable it here, but selectively enable it later (via
    // StrictMode) on debug builds, but using DropBox, not logs.
    CloseGuard.setEnabled(false);

    Environment.initForCurrentUser();

    // Set the reporter for event logging in libcore
    EventLogger.setReporter(new EventLoggingReporter());

    // Make sure TrustedCertificateStore looks in the right place for CA certificates
    final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
    TrustedCertificateStore.setDefaultUserDirectory(configDir);

    Process.setArgV0("<pre-initialized>");

    Looper.prepareMainLooper();

    ActivityThread thread = new ActivityThread();
    thread.attach(false);

    if (sMainThreadHandler == null) {
        sMainThreadHandler = thread.getHandler();
    }

    if (false) {
        Looper.myLooper().setMessageLogging(new
                LogPrinter(Log.DEBUG, "ActivityThread"));
    }

    // End of event ActivityThreadMain.
    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
    Looper.loop();

    throw new RuntimeException("Main thread loop unexpectedly exited");
}

ActivityThread内部有一个Handler用来和消息队列进行交互,内部定义了一组消息类型,包含四大组件的启动和停止过程。

private class H extends Handler {
    public static final int LAUNCH_ACTIVITY         = 100;
    public static final int PAUSE_ACTIVITY          = 101;
    public static final int PAUSE_ACTIVITY_FINISHING= 102;
    public static final int STOP_ACTIVITY_SHOW      = 103;
    public static final int STOP_ACTIVITY_HIDE      = 104;
    public static final int SHOW_WINDOW             = 105;
    public static final int HIDE_WINDOW             = 106;
    public static final int RESUME_ACTIVITY         = 107;
    public static final int SEND_RESULT             = 108;
    public static final int DESTROY_ACTIVITY        = 109;
    public static final int BIND_APPLICATION        = 110;
    public static final int EXIT_APPLICATION        = 111;
    public static final int NEW_INTENT              = 112;
    public static final int RECEIVER                = 113;
    public static final int CREATE_SERVICE          = 114;
    public static final int SERVICE_ARGS            = 115;
    public static final int STOP_SERVICE            = 116;
}

关闭

IT问道推荐

银行贷款频频被拒?
“Dr信用牛牛”让你远离信用污点 国内首家信用健康管理平台免费为你提供信用修复方案